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The range of the parameters is JJ,^ 0, with X J ^ = 1> and 
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APPENDIX 

An alternative parametrization of a positive definite 
Hermitian matrix p is 

p=exp#, (17) 

where E is any Hermitian matrix. For let H be diagonal-
ized by a unitary transformation, so that its diagonal 

I. INTRODUCTION 

IN an unrestricted and uniform, but not necessarily 
isotropic, space or lattice, all wave equations 

(classical, quantum-mechanical, continuous, or discrete) 
have plane-wave eigensolutions. They are basic func­
tions of irreducible representations to the respective 
space group and can only be normalized to the 8 
function. 

If there is a localized region of disturbance, there is 
always some difficulty in handling both localized and 
nonlocalized features simultaneously. The wave func­
tions for discrete energy levels are necessarily localized. 
For continuous (or quasicontinuous) energy sequences, 
on the other hand, the plane-wave solutions may be 
used for a low-order perturbation theory. Such a pro­
cedure breaks down, however, if there are scattering 
resonances, i.e., if the wave amplitude in the disturbed 
region exceeds strongly the amplitude outside. One has 
the phenomenum of V^quasilocalizecfstate. Yet, belong­
ing to a continuous set of eigenvalues, it is impossible^ 
normalize an exact eigenfunction to a finite value. 

It is therefore advisable to abandon the rigid concept 
of stationary solutions in favor of a metastable solution 

* Present address: Inst. F. Theor. U. Angew. Phyik D. T. H. 
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elements hi are real numbers. Then p, as defined by 
Eq. (17) will also be diagonal, with diagonal elements 
\i= exp(Af) which are real positive numbers. Conversely, 
let p be a positive definite Hermitian matrix, diagonal-
ized by the unitary matrix U, and with real positive 
eigenvalues X*. Let Ha be a diagonal matrix, with 
diagonal elements A»=lnX», which are real numbers. 
Then H^UHdU^ is Hermitian and p is given by Eq. 
(17). We observe that there is one and only one loga­
rithm of a positive definite Hermitian matrix, which is 
Hermitian. This parametrization is perhaps less con­
venient than the one discussed in the text. In fact any 
mapping / of the whole real line allows the parametri­
zation p=f(H). 

which can be normalized and has, because of its slow 
decay, almost the features of a stationary state. Pro­
vided that it is possible to define (i.e., to localize) in a 
natural way the metastable function 0(0) belonging to 
some given scattering resonance, and also that we 
know the dissipation <£(/) of this localized state in time, 
such a concept has two essential advantages: 

(a) Let ^(0) be an arbitrary wave packet at £=0, 
(^(0)| 0(0)) its projection onto the normalized meta­
stable state. Then one can show that the difference 
A^(O)=^(O)-<^(O)|(O))0(O) proceeds in time very 
nearly as if there were no scattering at all, 

AiK*)= / a(k)0k<°V««(k>y3ife, (1) 

a(k) = <A^(0)|«k<o>>, (la) 

where $k(0)(r) are the eigensolutions of the uniform 
space. We may, therefore, write the time behavior of 
the whole packet ^(0) as 

*(O = <lKO)|*(O))0(O+ aik^h-^Wk. (2) 

If there is more than one resonance, we have naturally 
to consider the projections to the other metastable 
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In the neighborhood of scattering resonances, the plane-wave solutions are strongly altered and low-order 
perturbation theory breaks down. Instead of calculating and using the exact scattering solutions there are 
many advantages to introducing the quasistationary concept of metastable localized eigenfunctions, by 
means of which the nonperturbative behavior near resonances can be described, whereas nonlocalized 
features are given by plane-wave functions. It is shown how metastable eigenfunctions can be defined in a 
natural way without arbitrariness. It is found that a number of general relations have to be satisfied by the 
metastable functions, which helps to approximate them in the case of a special problem. 
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states also. We remember now that the physical 
properties of a system (described by a wave equation) 
are known, if we know the time behavior of any 
arbitrary wave packet given at t=0. Hence, the dy­
namical behavior of a system with a localized disturb­
ance is approximately given by its metastable functions 
and the free space solutions, and a low-order perturba­
tion theory is applicable for further improvement. 

(b) For the investigation of transport processes 
(electric conduction, heat conduction) the concept of 
metastable states is even preferable to the exact 
stationary solution. Namely, in the neighborhood of 
scattering resonances it is impossible to define a 
spatially constant group velocity for moving particles or 
phonons, as the particles are delayed in the scattering 
region. Hence, it is impossible to establish a Boltzmann 
equation1 in the usual way. Instead one has to introduce 
more complicated methods. This, however, is not neces­
sary if one adopts the concept of a metastable state. For 
now one may use the group velocities of the uniform 
space for the moving particles; but one has the new 
possibility that the particles are captured in a meta­
stable state, where they no longer contribute to the 
current at all, and are re-emitted. This concept has been 
introduced by Wagner2 in a phenomenological way to 
calculate the thermal conductivity of a crystal with 
impurity centers. 

What, then, is the most fundamental property of a 
metastable state? Since a true eigenfunction of a discrete 
energy En is characterized by a time-independent func­
tional form, apart from a time-periodic amplitude factor, 
we postulate that the functional form of a metastable 
state be also time-independent, whereas the amplitude 
decreases exponentially,3 

0 ( 0 = 0 ( 0 ) e x p [ - [ ( t J 3 / » ) - (r / /2ft)]] . (I) 

This postulate is in agreement with a recent study of 
Newton,4 in which it is proved that there is a delayed 
emergence of particles associated with any sufficiently 
sharp resonance that under suitable conditions follows 
an experimental law of decay over many lifetimes (of the 
"metastable state")- I t is clear that such a behavior is 
only possible in a restricted, finite region, because 
otherwise it would contradict the conservation of proba­
bility. Consequently, the metastable function must be 
zero outside of a characteristic volume v, 

0(O)=O outsider . (II) 

We consider this as a second fundamental property of a 
1 A good presentation of transport processes is given in the book 

of F. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 
England, 1960). For thermal conductivity see also the excellent 
review articles by P. G. Klemens, in Solid State Physics, edited by 
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1958), 
Vol. VII, p. 1; and P. Carruthers, Rev. Mod. Phys. 33, 92 (1961). 

2 M . Wagner, Phys. Rev. 131, 1443 (1963). 
3 From now on we designate the localized functions by lower 

case phi, <£ or <f>j, etc. There should be no confusion with the plane-
wave solutions 4>k which always have the subscript k. 

4 R. G. Newton, Ann. Phys. (N. Y.) 14, 333 (1961). 

metastable function, although, strictly speaking, it is a 
consequence of (I). 

From this we see that an investigation of metastable 
states has two essential tasks: (1) the evaluation of the 
functional form <j> and (2) the definition of the localiza­
tion volume v. I t is the purpose of this paper to derive 
(j) from the scattering solutions near the resonance and 
to show that the localization area can be defined without 
arbitrariness. I t is this feature which distinguishes our 
study from the work of Wigner and Eisenbud5 and from 
that of Kapur and Peierls6; in these investigations 
the arbitrary choice of a fixed boundary surface for the 
internal region is inevitable, whereas in the present work 
the boundary follows in a natural way from the 
formalism. The exact definition of a metastable function 
(Sec. VII) even does not incorporate any choice of the 
boundary. In addition we shall find a number of very 
interesting properties by means of which one can select 
suitable methods of approximations for 0 as well as for 
the scattering solutions in the resonance region.7'8 

II. GREEN'S FUNCTION FORMALISM 

For our investigation we choose the quantum-
mechanical wave equation of an electron, to avoid any 
confusion. The results are easily modified for other wave 
equations and unchanged in principle. Let Ho be the 
free space Hamiltonian and V the localized scattering 
potential, 

H = H0+V. (3) 

Then the plane-wave solutions of HQ are given by 

« k ( r )= (27r)3 'Vk-r, £ (k) = (2m/h2)k\ 

The Green's function G(E;r , r ' ) must satisfy the 
equation 

(ffo--E)G(r,rO = « ( r - r O (5) 

and is defined by boundary conditions. For the outgoing 
wave solution of the scattering problem the Green's 
function reads 

1 r+0° expRk ' -Cr- r 7 ) ] 
G<+>(E;r,r') = / d*k' 

(2TT)37_00 E{k')-[E{k)+iii] 

fo2 e%h\x—x'\ 
= - , (6) 

2w47r|r—r / | 

where 77 is an infinitesimal positive constant. The 
stationary solutions of scattering theory may be written 

5 E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947). 
6 P. L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166, 

277 (1938). 
7 Throughout this paper we shall assume that Ty<$C \Ej\. For 

small resonance energies, i.e., Ej^Tj, it is not clear that a meta­
stable function with the properties (I, II) exists and we have to 
postpone this question for future investigation. See, however, 
Wigner (Ref. 8), where the question of resonances for small 
energies is considered. 

8 E. P. Wigner, Z. Physik 83, 253 (1933). 
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in the form of the Lippmann-Schwinger equation 

^ + ) = 0 k -G<+> (k) 7[1/(1+GC+) (k) F ) > k , (7) 

where G (+) in the denominator is formally taken as an 
inverse operator, 

G^(k) = lHo-(E(k)+ir])2-1 (8) 

and the fractional expression is defined by the expansion 

vii+G^ikyvy1 

= V- VG^ V+ FG<+> KG(+) V~-\ . (9) 

This is only a shorthand notation of integrations9; for 
instance, 

nothing is gained over the Wigner Eisenbud5 formalism, 
However, this localization area is not the localization 
volume v of the metastable state £see Eq. (11)]; it can be 
chosen rather arbitrarily within a certain range without 
any effect on v whatsoever. 

With the projection 

*k(0(r) = E<X/"kkwW0(r) 

and the Eqs. (9), (12), (13), we have for (7): 

(14) 

*k<+>=*k-G<+>(k)y«>i; p / « , (15) 

VG<+> Vt= V(r) I G(+Kr/)V(T')i(ryJr'. (10) and especially inside the region »: 

We make now the very important assumption that V is 
localized within a finite region i, 

V (r) = V(i) (r) for r within i, 

= 0 outside. 
(11) 

Then it is obvious that the expression (9) is also localized 
in i. In this finite space we can establish the eigenvalue 
equations 

G^iE^yyV^pji^dV^^E)^), (12a) 

{r, r' in i) 

d¥Ut')G^(E;r',x) K(r) = Mf(E)X<(r). (12b) 

By transforming both equations to a system of functions 
which is a complete orthonormal set in the finite region 
i, and therefore necessarily a discrete (but infinite) set, 
one can show that for a given E value (a) both equations 
(12) have only a set of discrete eigenvalues, and that 
each eigenvalue of one equation is also one of the other, 
(b) that the functions p3- or X*-, respectively, are inde­
pendent and each a complete set in the region i, and 
finally (c) that pj and Ay are bi-orthogonal and we may 
normalize them in such a way that 

<Xy«|p,v«>> = 
• / • 

J (r in i) 

^• ( r )py ( r )^=3 y . (13) 

Recently, equations similar to (12a), and (12b) have 
been considered by Coester10; we refer to this work for a 
thorough mathematical discussion. Interesting in this 
context is also the quasiparticle approach of Weinberg,11 

where Eq. (12a) also plays an important role. I t is true 
that one has to define a fixed localization area i for the 
solution of (12a) and (12b), and one should think that 

9 In the case of a vibrating lattice V and G(+) are matrices' and 
we have matrix products instead of integrations. The integrations 
on the other hand, can be considered as products of continuous 

10 F. Coester, Phys. Rev. 133, B1516 (1964). 
11 S. Weinberg, Phys. Rev. 130, 776 (1963). 

^k(+xo = 0 k < o _ £ N(E) p co. (15a) 

Far away from the scattering center, on the other hand, 
we have 

eikr 

^k (+) = ^ k + ( 2 7 r ) - 3 / V k W — for r ->oo , (15b) 
r 

where 

A(n) = - ( - ) (— E — 
\ 2 / \2m) i l+/xy(E) 

x / e r^c /^- 'T^croPi^CrOrfV. (16) 

The functions py(r) and Xj(r) are basic functions to 
irreducible representations of the point-group G(V) of 
V(x). But because of the high (accidental) degeneracy 
of an energy E in the continuum, an eigenfunction of H 
is not necessarily a basic function to an irreducible 
representation of G(V). This is directly seen from (15), 
where the scattering amplitude is a superposition of 
different basic functions. There are, however, certain 
energies, for which in a localized region the functional 
behavior of ^k ( + ) ( r ) reduces approximately to an 
irreducible basis of G(V). This is just the scattering 
resonance and the energy adopts discrete features. 

III. SCATTERING RESONANCES 

From Eq. (15) we see that the scattering amplitude 
increases sharply, if one of the denominators approaches 
zero. The solutions of the equations 

l+/*i(£) = 0 , ES<0 (17) 

give the true localized states. For E>0 and localized 
V there is no true localized eigenstate and /xj is a complex 
quantity. In this case we can have at best scattering 
resonances given by the solutions of the equations 

l+Re/zyCE) = 0 , Ej>0. (17a) 

If the imaginary part of fxj for the resonance energy Ej is 
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very small, the j term in (15) exceeds all other terms 
and we have 

^kc+>, '0k" 
1+W(-E) 

<?<+)(k)7«py (»> 

for E—>Ej. 

In the neighborhood of E=Ej we may write 

l + M y = « £ £ - £ > + * r i / 2 ] 

with the abbreviations 

2?,=-
6 Re/jy 

dE 
Jy=Im/*/(E/), 

2 i?y 

(18) 

(19) 

(20) 

In the region of the scattering center the resonance term 
in (18) exceeds also the plane-wave term and we have 

, . (+ )« - fo(Ok)-
2l 1 

E-Ej+iiYj 

G(+)(£,;r,r ') 

*> , (21) 

where 

*,(r) = 

( r ' i n ° X F ^ ) ( r O P i ( ' : ) ( ^ / ^ V , (22) 

&(Gk) = (I/RAW* I *k«>> I *_*y. (23) 

The function <£y(r) is a basis in r space for the j repre­
sentation of the group of V, which is obvious directly 
from the definition (22). However, it is no localized 
function, as seen from the asymptotic behavior of G (+), 
i.e., it cannot be normalized to a finite value. We shall 
see that <£>y(r) has just the fundamental property (I) if 
we restrict it to a certain normalization volume which 
is not arbitrary, as was to some extent the region of the 
eigenvalue equations (12). The function gy(Ok), on the 
other hand, is a j representation in k space because of 
the special form of the space group representations <£k. 
The resonant scattering amplitude may be written as 

/k(0)=-&(Gk> 
2 X 3 

E-Ej+tfTi 
«y(0), (24) 

where ay (12) is a j representation of the group of V(t) in 
r space, 

XV^(i')Pj^(Ehi')dV. (25) 

I t will be shown that the functions gy(Ok) and ay (12) 
exhibit some very interesting properties, which simplify 
the calculation. 

We have to emphasize that the formulas (18) and (24) 
are only valid if the resonance is nondegenerate, i.e., if 
die representation j is one-dimensional. For degenerate 
resonances we have to sum up over all eigenfunctions 
[Ay,Py] belonging to the same eigenvalue /*y. As this 

generalization is obvious, we shall confine the following 
consideration to nondegenerate resonances. 

Three restrictive remarks are necessary. (1) The 
second term in (15), exact as it stands, is normally not 
a sum of pure resonance terms, but may be decomposed 
into a nonresonant term, often called "potential 
scattering," and a sum of resonance terms. We refer in 
this context to the fundamental paper by Wigner.12 

Therefore, Eq. (24) has to be supplemented by the 
potential-scattering term; but the term is often negli­
gible. (2) If V^O everywhere, the plane-wave term in 
(18) has the same order of magnitude as the resonance 
term, whence it cannot be neglected near the resonance, 
as done in Eq. (21). (3) If the energetic distance between 
the resonances Ej is of the order of Ty, the "one-level" 
formula (21) is inadequate and the neighboring reso­
nances have to be included. We refer to another paper 
by Wigner,13 where this question is discussed. 

I t is apparently not difficult to incorporate these 
modifications into the subsequent formalism, but for 
clarity we avoid this extension, the more so, as the exact 
definition of metastable states in the Krylov-Fock 
formalism (Sec. VII) is not changed by them. 

IV. RESONANT SCATTERING OF A WAVE PACKET 

The metastable functions are found in a most natural 
way by investigating the time behavior of a wave 
packet. If there is a scattering resonance, a part of the 
wave packet will be captured at the scattering center, 
whereas the residual part moves approximately as if no 
scattering center were present. The captured part 
decays slowly and dissipates away from the scatterer. 
This process is well known and described in standard 
literature.14 We shall modify the treatment to meet our 
special intentions. 

We consider a wave packet of the general form: 

7' 
J AE 

* ( r , 0 = / C(k)^+)(r)e-iEti*dsk (26) 

and assume its energy width to be much larger than the 
resonance, 

AE»Ty, (27) 

but small enough to cover only one resonance. Capture 
of a part of the packet will only occur, if its projection 
onto a j representation is not zero. Consequently, we 
make the choice 

C(k) = Co: &*(Ok) 

= 0 otherwise, 

for Ej 
AE AE 

<E<Ej+—, 
2 2 (28) 

12 E. P. Wigner, Phys. Rev. 70, 15 (1946). 
13 E. P. Wigner, Phys. Rev. 70, 606 (1946). 
14 For example, E. Merzbacher, Quantum Mechanics (John 

Wiley & Sons, Inc., New York, 1961), pp. 129, 240; A. Messiah, 
Quantum Mechanics (North-Holland Publishing Company, Amster­
dam, 1961), Vol. I, Chap. X, p. 401 ff. 
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where the abbreviation has been used 

<&!&>= /&(0k)gy*(Qk)<fi2k. (29) 

By means of the general expression (15) and the 
definition of gj [Eq. (23)] it is easily realized that with 
the choice (28) the wave packet (26) is just a basic 
function to the irreducible representation j of G(V). 
Let us first calculate that part of ^(r,£) which belongs 
to the plane wave part of ^k ( + ) , 

*oCr,0= / C(k)0k(r)er**«/Wfe. (30) 

For large distances from the scattering center ^o(r}t) 
takes the rather simple form 

where we have assumed the region AE to be small 
enough (but ^>T3) to allow a linear approximation 
k = kj+(kj/2Ej)(E~Ej); (—£2) is the space direction 
belonging to (—r). As the formula applies for large r 
values, one realizes that the first term characterizes 
the motion for t<0, the second for t>0;iox t<0 (31) is 
a centrally symmetric incoming wave, for / > 0 an out­
going one. The center of ^o(r,t) is given by 

re=-(2Ej/hkj)t for * < 0 , (32a) 

re--= + (2E3/M3)t for / > 0 , (32b) 

and the mean radial extension 

Ar=(Sir/k3)(E3/AE). (33) 

1 k3
2 t 

^o ( r , 0 « — - — -
(-oo) (2ir)^ {gj\gj) 

-iEjtlh 

X e f - ^ g y ( - 0 ) -
x sin[ (AE/^E,) (k3r+2E3i/fi) ] 

[_k3r+2E3i/K] 

Extrapolating the behavior (32a,b) we see that the 
center of ^o(r,t) is at ^=0 just in the region of the 
scatterer. The part of ^r(r,t) which belongs to the 
scattering amplitude of ^k (+ ) is also easily calculated 
for large r, using (15b), 

sin[(AE/4£ i) (k3r-2E3t/h)~]} 
-erW&(Q) - — , (31) 

[k3r-2E5tfT\ J 

* s (r,/)= (2TT)-3/2 

(r—>oo) 
C(k)/k(Q)—e~ 

AE r 

and inserting (24) and (28), 

(34) 

Ty a,-(Q) 

<<-*») 4 £ r 
exp - ( - — 

L \h t 

1 
— Si 

7T 

kjT\] 

2E3J 

-AE 

- 2 

2_ 

t 

h 

X< 

21 

rO for t<0 •> 

1 for r<2Ejt/hkj 

0 for r>2E3t/hk3, 

> 

fin r 1 for t/h>kjr/2Ej) 

ij\J 1 -1 for t/h<k3r/2E3\ 
(35) 

Here again a linear approximation for k has been used in the region AE. The first term describes just the dissipation 
of that part of the packet which has been captured at 2=0 and is slowly re-emitted. For t>0 the second term is a 
wave packet similar to ^o(r,t) with its center at r c = 2E3t/hk3;ior t<0 there is no center, and it is evident that this 
term represents the subtraction from ^o(t,t) to account for the loss by capture. Redefine now 

¥</ (r,0 = *o(r,0-
i ' T3 a3(ti) rAE\t k3r 
— C 0 k 3 * — • — - e ^ - E i t m s i — 

2Ej r L 2 \h 2E3 

1 for t/h>kjr/2Ej) 
X{ . (36a) 

- 1 for t/h<kjr/2Ej\ 

For £>0 this is just the part £&(t) of Eq. (1) which moves as if no scattering center were present. Further 

fO for 2<0, 
i Tj a3(ti) 

**' (r,t) = CQk3* • exp{i(kjr~E3t/h)- (T3/2)[t/h- (kjr)/2Ej']} X 
( — ) ( 2 7 r ) i /2 4 J E J . r 

1 for r<2E3t/hk3, (36b) 

10 for r>2E3t/hk3 

and be tyle(t,t) the part of ty which is localized in the scattering region after capture. Then we must clearly have: 

< ^ c ( 0 ) | ^ ( 0 ) ) = Um<*0 '(OI*o'(0>-- lim<¥o ' (0*o'(0> (37) 
t—»—oo £—>-j-°° 

and also: 
<^ c (0 ) | ^ c (0 )> = Km <¥,'(/) !*,'(/)>. (38) 
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These are two normalization conditions for ^" (O) . They will allow us to define the localization volume of the 
metastable function. Inserting (36b) into (38) we get: 

where 

<¥'«(0) | *'«(0)> = - 1 Co | %{—)(aj | aj, 

<oy|cr/>= /ay(Q)aj*(0)dD. 

Identifying both equations (37) and (38) we get the relation 

(38a) 

(39) 

(40) 

(41) 

lim <¥.'(<) | ¥ / ( f l > = (Km - Km )<¥o '(0 l*o'(*)>• 
t—>-\-co t—»—co t—H-°o 

or inserting the respective expressions we find the condition 

ImJ gj(Q)af(2)(Kl=2*X«y I «/><&! &> • 

V. METASTABLE FUNCTIONS 

In the preceding section we have only considered the region at large distances from the scattering center. Let us 
now investigate the scattering region itself. We have shown already that the introduced wave packet is localized 
near the scattering region at t—0. The eigensolution ^ k

( + ) for this region is given by (21) and we may write therefore 
for the captured part of our wave packet 

and this is approximately 

f Tj/2 

J AS E-Ej+iTj/2 

Vlc(r,t)« +iirC<&,ir)kj* expZ~iEjt/h-Tjt/2h'] 
2Ej 

1 for / > 0 , 

0 for *<0 . 

(42) 

(43) 

This important formula indicates that the functional 
form of the captured wave does not change in time, 
whereas the amplitude decreases exponentially. This is 
just the fundamental property of a metastable function 
as postulated in (I). Yet, in Sec. I l l we have seen 
already that $y cannot be normalized to a finite value 
without restriction to a finite space region. On the 
other hand, ^(r,0) has to be normalized to the value 
(38a), and this allows us to define the localization 
volume v of the metastable function 

practically unity inside the scattering region yet ap­
proaches zero rather rapidly outside. Then we may 
write 

fc(r) = p*y(r), (47) 

where a is determined by the equation 

1 /2EA 
<P$y|p$/> = 

1 /2EA 
-—-( )(ay|«y)-
( 2 x ) 3 \ r y V 

(44a) 

/ 
J v 

$y(r)*y*(r)rf8r= 
1 f2Ei 

(2x)3\rA 
'V i 

and we establish 

0y(r)=<3?,-(r) within v, 
^ 0 outside. 

) (44) 

(45) 

An alternative definition is given by Kemble15 who 
suggested the introduction of a localization function 

p=exp(—or n ) , (46) 

where n is a positive integer > 2 to ascertain that p is 

15 E. C. Kemble, The Fundamental Principles of Quantum 
Mechanics (Dover Publications, Inc., New York, 1937), p. 190. 

Thus the investigation of a suitably chosen wave packet 
has given us both the functional definition and the 
localization volume of the metastable function #,-. We 
shall see that this is not the only way, but that other 
procedures lead to the same result. 

VI. PROJECTION ONTO THE SCATTERING STATES 

There is one other way to determine the normalization 
of 0(r) which is not based on the discussion of a wave 
packet. This is achieved by projecting fa onto the scat­
tering eigenfunctions ^k ( + ) and is suggested by the fact 
that all ^k (+ ) near the resonance E—Ej and within the 
scattering region have the same functional behavior 
given by %(r) [see Eq. (21)]. 
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We make the assumption 

^ ;=^.(r) within v, 
=0 outside, (A) 

and it is to be emphasized that this is now rather a 
postulate than a result as in (45). Taking it as such, we 
have (a) to prove that it is in agreement with relation 
(I) and (b) to determine the localization area v. 

Let us represent fa as 

• / 

fc(r)= Aj(k)#k<»(i)d*k. 

Then by means of (A) and (21) 

CT//2) 
^(k)=-&* (O k> (<j>j\<l>j). 

E-Ej-iTj/2 
Now from (48): 

and inserting (49): 

(48) 

(49) 

(50) 

or 
(51) 

which is again a normalization condition for fa and 
determines z>. If the definition of 0/ is unique, both 
relations (44) and (51) have to be identical, whence we 
arrive at 

(V/ (4x) 2 ) (ay | a , ) feUy)=l . (52) 

This condition is indeed satisfied and a consequence of 
the stationariness condition for the ̂ k

(+), which can be 
written as 

— //k(G)/k*(Q)<fi2 
Y2 J 

,e-ikr /• . 

= - j / /k*(fi)^k-r[l+cos(9]^+c.c. , (53) 

where c.c. is the complex conjugate. Consider, for 
example, the simple case of an 5-type scattering,16 

/k(B) = 
1 r/2 
kE-Eo+iT/2 

(54) 

Inserting that into the right-hand side of (53) and using 
definition (24) for /k(&) we find 

^(0*)gy*(0*X«y|«y>=W*o8, (55) 
or 

fey|&X«y|«y>=(V*o)a (55a) 
as required by (52). 

16 E. Merzbacher, Quantum Mechanics (John Wiley & Sons, 
Inc., New York, 1961), p. 238. 

Finally we have to show that fa is of the form (I), but 
this is easily demonstrated. Using (48), (49), (21), and 
(51) one has 

(W -fa (k)^k<+>(r)*-««*<*»* 

=—<&b><*/(0)|fc(0))to(0) 

(IV/2)* 
2E, 

X / 
!"*dE 

( £ - £ y ) 2 + r / / 4 

= 0y(O) exp[- i£^/A-r ,V2A]. 

VII. EXTENSION OF THE KRYLOV-FOCK 
FORMALISM 

(56) 

In both preceding definitions of the metastable state 
we have adopted the knowledge of the relation (21) and 
assumed its validity in the whole region of fa. An ap­
proach which is not based on this knowledge can be 
taken in close analogy to the theory of Krylov and 
Fock.17 They show that in the one-dimensional space 
the postulates (I) and (II) suffice to fix the coefficients 
Aj(k) up to a normalization factor. Extending their 
method to three-dimensional space one can deter­
mine Aj(k) up to a function Gy(0&) on the surface 
E(k) = E3\ Using the expansion (48) and its progress in 
time we can write the projection of fa(t) onto fa(0) as 

<*/(<) I **«>)>=f AsMA/Hk)*-**"*™. (57) 

But this projection can also be written by using the two 
postulates (I) and (II), 

(<t>* (t) I fc(0)) = exp[ - iEjt/h- iy/2ft] 
X<*y(0)|fc(0)>. (58) 

Thus we get 

exp[-tB^/ft-r^/2»]<«y(0) I <t>M) 

AiQtiAfQLif-wiWk (59) 
• / ' 

and it is easily seen that this can be inverted to yield 

( — )JAj(k)Af(k)dQ* 
\2E 

= <<k(0)|«fe(0)>-
0 V 2 T ) 

(60) 
(£-£,)*+(Ty/2)* 

To solve this equation we try the ansatz 

AM-GAQME), (61) 
17 N. S. Krylov and W. A. Fock, Zh. Eksperim. i Teor. Fiz. 17, 

93 (1947). A good review of this work is given in D. F. Blochinzew, 
Grundlagen der Quantenmechanik (VEB Deutscher Verlag der 
Wissenschaften, Berlin, 1953). 
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which implies 

. <^(°)l^(°))/£rA *• 
<Gy|Gy> \ W (£-£,)*+(Ty/2)* 

and as cj)j(t) = 0 ior t<0 

-<^- (0 ) | ^ (0 ) ) /£ r : 

«/(£) = 
<G,|Gy> (f)] 

1/2 1 

(E-Ed-Xi/l' 

(62) 

(63) 

which is just the energetic behavior of the preceding 
A (k)'s. (Gj\Gj) is of finite value. I t is clear that we can­
not calculate Gj by this formalism without involving 
some further knowledge of the scattering solutions 
^ k

( + ) . But whatever the functional form of Gy(Ok) may 
be, it is clear (because the derivation was based on the 
presupposition) that 

fa •jo, (Ok)-
(E-E5)-i£j/2 

^k<+W (64) 

is a localized function. Therefore, (64) is a definition of 
the quasilocalized state which does not require the 
restriction to a special localization area v. This is the 
principal advantage of the method of Krylov and Fock. 
But this advantage is of no practical importance, be­
cause in order to use (64) we would have to know the 
<Ak

(+) especially in the intermediate space region where it 
decreases from large values to small ones; this decrease 
is fairly well approximated by (21), but while fa ap­
proaches zero, (21) breaks down, and we have to use a 
complicated expression for tAk(+) in a region where fa is 
already practically zero. To avoid this we can use the 
approximation (21) within a restricted well-defined 
space region v, while putting <fo=0 outside, and we are 
back to the formulation of the last section. 

VIII. FURTHER PROPERTIES OF &(O k ) AND a , (Q) 

In Sec. VI we have made the presupposition that fa be 
zero outside v and subsequently derived the result (49). 
Let us now check directly if this result agrees with (A) 
by using (15b) and (24) for the region outside v 

fair) 

(fal^j) 

f Tj/2 ay(G) 
= - (2ir)-V* / g y * ( Q k ) _ — —--e^d8k+ (2TT)-3 /2-

E-Ej-iVj/2 ><0/ ( £ - £ y ) 2 + ( l V 2 ) 3 
-dk, 

= (2^)-1/2-( — ) exp [ f f t i f -*y r , r / 4£ y ]{ -2^* (0 )+P i«y (0 )<g i | g i ) } . 
r\ 4Ej I 

This is zero only if 

fo*(Q) = (*y/4»-)<gy|&>«i(a). 

(65) 

(66) 

We get the very interesting result that g/(S2) and otj(Q) have the same functional form. Multiplying (66) by gj and 
integrating over the surface we come back to the Eq. (51). 

I t is worthwhile to note that (66) is in agreement with the optical theorem™ 

I /k(Q)/k*(QJ<flJ= (4JT/*) Im/kCOk), 

which reads for E—Ej, using (24) 

gy(Ok)ft*(Ok)<«y|«y>= (4JT/*/) Re&(Gk)«;(Ok). 

(67) 

(67a) 

This is an identity if we insert the relation (66). There is still another way of checking (66), if we calculate the 
dissipation of <f>j: 

fait) 

<fa(0)\fa(Q)) 
= 0 for — > - , 

IF- ft 

Tjkfajitt) 
= ( 2 T T ) - 1 / 2 - ^ - - — 

SEJ r 

whence, inserting (66) and integrating, 

(<t>j(t)\fa(t)) 

(fa<0)\fai 

Hout 

0)) 

kjT t 
{gj I gi> exp ikjr — + — ( — ~ - ) for — < - , 

L h 2\2Ej h/J 2Ej h 

(68) 

18 E. Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc., 
New York, 1961), p. 499. 

This is just the behavior which is requiied by the local­
ized time property I and conservation of probability. 

IX. SUMMARY AND DISCUSSION 

We may summarize the result in the following way: 
A metastable state is characterized by a time-independ-



BS70 M A X W A G N E R 

ent functional form and a time-dependent decay factor. 
These properties are only possible within a restricted 
space region whence the metastable function is zero 
outside this region. The general expression for such a 
behavior is given by its scattering expansion at t=0 

W *»(0) — flf (ok)-
IY2 

E-Ej-iTj/2 
* k

c + ) < * 8 * , 

where Tj/2 is the decay constant and Ej the energy of 
the metastable state. 

Each metastable state is connected with a scattering 
resonance and is a basis for an irreducible representation 
of the group of the scattering potential. In the neighbor­
hood of a resonance the scattering amplitude is of the 
form 

r-/2 
(b) /k(Q) = -gy (Ok) -aj(Q) 

E-Ej+iTj/2 

and the scattering solution within the scattering region, 

•(c) *k<+ )(r)«-&(O f t> 
Ty/2 

E-Ej+iTj/2 
* y « , 

where gy, ay, and $y are given by (23), (25), and (22), 
respectively. We have shown that ay and g3- have the 
property 

(d) gj*m = kj/4:T(gj\gj)aj(tt) 

and <pj, as defined by (a), is normalized to the value 

1 2Ej 
(e) <*/(0)|*i(0)> = — (aj\aj). 

(2x)3Ty&y 

For practical purposes (a) is of little utility, because it 
is necessary to employ the exact eigenfunctions ^ k

( + ) in 
a region where <t>3- is already small, in order to ensure the 
the decrease to zero, whereas in the region of the validity 
of (c) we have #y=$y. Therefore, it is useful to define 

(f) <t>j^&j within v, 
= 0 outside, 

and determine v by the normalization condition (e). 

We have checked our established concept of a 
metastable function in several different ways and shown 
that it is consistent and in agreement with other general 
results of scattering theory. The important result is that 
it has been possible to give a general definition of a 
metastable state, without referring to a special model. 
I t also has not been necessary to introduce a "localizing" 
Hamiltonian Ho', which is identical with the true one 
within the scattering region, but with an altered 
asymptotic behavior to ensure truly localized eigen-
functions. The choice of such a Hamiltonian is evidently 
not free from arbitrariness. 

To avoid arbitrariness one has to look for a general 
property which a metastable should exhibit in any case. 
There is only one property of such general nature: that 
it should differ from a true stable state only by an 
exponential decay factor in time, i.e., there should be 
apart from it a periodic time factor and a constant 
functional form. We have introduced this as the only 
fundamental postulate for the definition of a metastable 
state. (The localization to a finite space area is already 
a consequence of it.) Using this postulate and scattering 
theory, it is straightforward to calculate the metastable 
function, either by considering the captured part of a 
wave packet, or by projecting the supposed function 
directly onto the system of scattering solutions. 

Although the concept of metastable states, as defined 
by the extended Krylov-Fock formalism, is an exact 
one, the difficulty in the general investigation lies in the 
fact that one has to use approximations for almost each 
single calculation which are all permissible only if 

T3«Eh 

When the scattering resonance gets broader, the meta­
stable state, given by the fundamental postulate (I), 
decays quickly and the clear physical features fade 
away. 
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